Directorate Change

Scancell Holdings Plc (AIM:SCLP) announces that Mr Peter Allen will be stepping down as a non-executive Director as of today’s date. The Board would like to thank Peter for his work during his time on the Board.

For Further Information:

Dr Richard Goodfellow, Joint CEO

Scancell Holdings Plc + 44 (0) 20 3727 1000

Professor Lindy Durrant, Joint CEO

Scancell Holdings Plc  

Camilla Hume/Stephen Keys

Cenkos Securities Plc

+44 (0) 20 7397 8900

Mo Noonan/Simon Conway FTI Consulting

+ 44 (0) 20 3727 1000

 

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated in a Phase 1/2 clinical trial.  Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend. 

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

Dr Sally Adams to Join Scancell as Development Director

Scancell Holdings Plc, (AIM:SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce the appointment of Dr Sally Adams to the Board as Development Director with immediate effect.

Sally Elizabeth Adams, 53, has worked as a consultant alongside Scancell since 2008 providing guidance through the drug development process. With 25 years’ industry experience, Sally has brought to Scancell her expertise in most aspects of drug discovery, including preparation and execution of clinical development plans from research to the clinic, scientific writing, implementation of quality control and documentation systems plus management of the SCIB1 clinical trial itself. She has worked on a number projects in recent years including anti-infective vaccines, cancer immunotherapies and an innovative stem cell treatment for visual dysfunction. Previously, Sally was Head of Neurology & Virology at British Biotech and Development Director at Neures Limited. She has an MA in Genetics from the University of Cambridge and a PhD in Microbiology from Imperial College London.

Richard Goodfellow, Joint CEO of Scancell, said: “Sally has already worked closely with the Scancell team for several years. She has played a key role in the planning and execution of our successful clinical trial of SCIB1 in patients with metastatic melanoma and we are delighted that Sally will be joining our Board at such a pivotal juncture in the Company’s history. With her industry, scientific and drug development knowledge, Sally will continue to play an important role in the development of our ImmunoBody® and Moditope® platforms.”

Schedule Two information:

Sally was a director of Winetraders (UK) Limited until December 2013.

There is no further information required to be disclosed pursuant to paragraph (g) of Schedule To of the AIM Rules for Companies.

 For Further Information:

Dr Richard Goodfellow, Joint CEO

Scancell Holdings Plc + 44 (0) 20 3727 1000

Professor Lindy Durrant, Joint CEO

Scancell Holdings Plc  

Camilla Hume/Stephen Keys

Cenkos Securities Plc

+44 (0) 20 7397 8900

Mo Noonan/Simon Conway FTI Consulting

+ 44 (0) 20 3727 1000

 

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated in a Phase 1/2 clinical trial.  Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend. 

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

AACR Presentation on SCIB1

Scancell Holdings Plc, (AIM:SCLP), the developer of novel immunotherapies for the treatment of cancer, today announces that interim data from its Immunobody® (SCIB1) Phase I/II clinical trial in patients with Stage III/IV melanoma will be presented at the upcoming American Association for Cancer Research annual meeting (AACR) in San Diego, California, 5-9 April 2014.

Dr Lindy Durrant, Joint CEO of Scancell, will present results from the clinical study in the AACR Conference Session CT331 “Immunotherapeutic Trials, Immune Response to Targeted Agents, and Prevention” which is scheduled to be held between 1pm and 3pm PDT on Tuesday, 8 April 2014.

AACR is the premier cancer research event with about 18,000 researchers, patient advocates, and other professionals in the cancer field from around the world scheduled to be in attendance. It provides a unique opportunity for members of the worldwide cancer research community to learn about cutting-edge advances, obtain feedback on their own research, and make connections that will foster future collaborations. The theme for this year’s meeting, “Harnessing Breakthroughs – Targeting Cures,” reflects the fact that the translation of basic science into clinical advances for the benefit of cancer patients is occurring at an increasing pace and more seamlessly than ever before.

All abstracts and details on timings can be accessed through the AACR website: http://www.aacr.org/home/scientists/meetings--workshops/aacr-annual-meeting-2014.aspx

The title, timing and location of the poster presentations are as follows:

Abstract: CT331
Title: Immunotherapeutic Trials, Immune Response to Targeted Agents, and Prevention
Presenter: Prof Lindy Durrant
Day / Date: Tuesday 8 April 2014
Session Time: 1pm – 3pm Pacific Daylight Time 
Location: Room 1, San Diego Conference Center

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 3727 1000
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 3727 1000

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated in a Phase 1/2 clinical trial.  Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend. 

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

8mg Higher Dose SCIB1 Study On Track

Scancell Holdings Plc, (AIM:SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce completion of patient dosing with 8mg of SCIB1 ImmunoBody® (‘SCIB1’) in Part 1 of its on-going Phase 1/2 clinical trial in patients with Stage III/IV melanoma.

Following preliminary evidence from Part 1 of the study showing that a 4mg dose of SCIB1 produced an immune response that might be associated with clinical benefit in patients with malignant melanoma, regulatory approval was obtained for treating a cohort of up to six patients with a higher, 8mg dose of SCIB1.  Five patients with metastatic tumour present have been recruited and dosed, with no reported drug or device-related serious adverse events.  Immunology and clinical responses in this higher dose cohort of patients are currently being analysed and will be reported by the end of Q2 2014. 

Regulatory approval to expand Part 2 of the study to include up to 13 patients receiving the 8mg dose was obtained in October 2013.  With the absence of any serious toxicity in the 8mg Part 1 cohort, enrolment into this cohort has now been closed and new patients will be now be recruited into the expanded 8mg Part 2 cohort.  The first such patient was dosed with SCIB1 earlier this week.

Richard Goodfellow, Joint CEO of Scancell, said:  “Our higher dose 8mg SCIB1 study is progressing well.  In view of the continued safety profile of SCIB1 at the higher dose, we are now recruiting for Part 2 of this cohort, which will assess the immune and clinical response to SCIB1 in a larger number of patients with Stage III/IV melanoma.  We look forward to reporting the results from Part 1 of the study later this year.”

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 3727 1000
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 3727 1000

 

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated in a Phase 1/2 clinical trial.  Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend. 

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

Publication of Moditope® Patent

Scancell Holdings Plc, (AIM: SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce the publication of the patent application underpinning the Company’s Moditope® platform.  When granted, this patent will protect the platform to at least 2033.

The patent application, describes how the Moditope® immunotherapy platform harnesses CD4+ T cells to eradicate tumours.  Moditope® deploys certain tumour-associated peptide epitopes as immunotherapeutic agents to overcome self-tolerance and eradicate tumour cells, with no requirement for blockade inhibitors.  Planning is underway for the manufacture, preclinical testing and first-in-man clinical development of the Modi-1, the first Moditope® immunotherapeutic.  The PCT patent application which has a priority date of 7 August 2012 was published on 13 February 2014 as WO2014/023957.

Prof. Lindy Durrant Professor of Cancer Immunotherapy at the University of Nottingham and Joint CEO of Scancell, said:  “The publication of the patent application is another important milestone in the development of a range of novel immunotherapeutics from the Moditope® platform.  Recent data suggests that Modi-1 may exhibit potent anti-tumour effects even against established aggressive tumours, dramatically improving survival rates.  We look forward to a busy and exciting year in which we continue to prepare Modi-1 for clinical trials which are on schedule to start in early 2016.”

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 7831 3113
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 7831 3113

 

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated  in a Phase 1/2 clinical trial.  Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend. 

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity. The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future. 

SCIB1 Granted FDA Orphan Drug Status

Scancell Holdings Plc, (AIM: SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce that the United States Food and Drug Administration (‘FDA’) has granted orphan drug designation to its SCIB1 ImmunoBody® (‘SCIB1’) for the treatment of metastatic melanoma.

Orphan drug status in the United States qualifies the development of SCIB1 for a 50% tax credit for clinical trials, a waiver of the prescription drug user fee for the drug approval procedure and a period of seven years of market exclusivity following drug approval by the FDA. During the orphan market exclusivity period, the FDA cannot approve a NDA (new drug application) or a generic drug application for the same product including the principal molecular structure features of the drug and for the same rare disease indication.

The Orphan Drug Designation program provides orphan status to drugs and biologics which are defined as those intended for the safe and effective treatment, diagnosis or prevention of rare diseases/disorders that affect fewer than 200,000 people in the U.S., or that affect more than 200,000 persons but are not expected to recover the costs of developing and marketing a treatment drug.1

Richard Goodfellow, Joint CEO of Scancell, said: “The grant of orphan drug status gives SCIB1 further protection in our key US market in addition to our patent portfolio. We also welcome the financial incentives afforded by such a designation. Following encouraging data from Part 2 of our SCIB1 Phase I/II trial announced in December, development work continues apace and we look forward to disclosing data from additional patients receiving the 8mg dose in due course. ”

1. www.fda.gov/forindustry/DevelopingProductsforrareDiseasesConditions/default.htm

For Further Information

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 7831 3113
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 7831 3113

About Scancell

 Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms. Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is being evaluated in a Phase 1/2 clinical trial. Data from the trial demonstrate that SCIB1 produced a melanoma-specific immune response and promising survival trend

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity. The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

Nottingham Technology Grant

Scancell Holdings Plc, (AIM: SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce that it has received a Nottingham Technology Grant Fund (”N’Tech”) of £80,000 from Nottingham City Council. Funded by the Government’s Regional Growth Fund, the grants from N’Tech are awarded mainly to small and medium-sized companies to support business growth and expansion in the Greater Nottingham area. Scancell will use the funds to secure additional staff to develop its groundbreaking new Moditope® technology platform.

Richard Goodfellow, Joint CEO of Scancell, said: “We are delighted to receive this additional funding from Nottingham City Council. This funding will allow us to expand our skill base and boost our productivity at this important juncture in the Company’s history."

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 7831 3113
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 7831 3113

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and has just completed Phase 1/2 clinical trials which demonstrated that SCIB1 produced a melanoma-specific immune response and promising survival trend.  A further higher dose study of SCIB1 will take place during 2014.

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

ImmunoBody technology used in prostate cancer protein discovery

Scancell Holdings plc (‘Scancell’ or the ‘Company’), the developer of novel immunotherapies for the treatment of cancer, notes Nottingham Trent University’s announcement that using Scancell’s Immunobody® technology, they have unlocked a protein that could pave the way for future prostate cancer vaccinations.  The full text of Nottingham Trent University’s announcement follows:

 SCIENTISTS UNLOCK PROSTATE CANCER PROTEIN IN MOVE WHICH COULD LEAD TO IMPROVED CANCER VACCINES

UK scientists have identified how a specific region of a prostate-related protein can be used to trigger the body’s immune response against prostate cancer. The study by scientists at Nottingham Trent University – and published in the European Journal of Immunology – could pave the way for new and improved vaccines for prostate cancer.

The work focused on the prostatic acid phosphatase (PAP) protein, which is present in more than 90% of prostate tumours. Scientists were able to develop a new prostate cancer vaccination strategy utilising a portion, or ‘epitope’ of this PAP protein – PAP 114 – which was capable of preventing and reducing tumour growth in pre-clinical trials.

The team believes the study could lead to the development of new vaccines which are able to generate a more specific, more efficient, faster and longer-lasting protective immune response against prostate cancer.

It might also mean that vaccines could be developed at a lower cost than currently, and with fewer potential side effects, say the scientists, who are based in the university's John van Geest Cancer Research Centre.

Prostate cancer is the most common cancer in men in the UK – each year more than 10,000 men will die as a result of prostate cancer and more than 40,000 will be diagnosed with the disease. Cases are rising among men over 50 and the average age for men to be diagnosed is between 70 and 74.

Although cancer vaccines can be formulated in a number of different ways, the approach devised by the scientists for this PAP vaccine would involve a series of injections. 

Dr Stephanie McArdle, lead researcher based in Nottingham Trent University’s John van Geest Cancer Research Centre, said: “Unfortunately for most cancers, the specific targets against which vaccination strategies can be based are sometimes weak and relatively poor at inducing robust, protective anti-tumour immune responses.

“Developing cancer vaccines that can overcome the capacity of tumours to ‘evade’ the immune system and induce protective anti-tumour immunity is therefore essential for the development of new immunotherapies for aggressive disease.

"Our findings demonstrate that PAP-114 is a promising candidate for further development of PAP-based anti-cancer vaccine strategies. It induces characteristics that are consistent with anti-tumour protection; capable of triggering an immune attack against prostate cancer cells and protecting against established prostate tumours."

The epitopes of the PAP protein were delivered to the immune system using Scancell’s proprietary ImmunoBody® technology. 

ENDS

Notes for editors: 

Nottingham Trent University’s John van Geest Cancer Research Centre is a unique purpose-built scientific facility. Its aim is to save lives and speed recovery by improving the early diagnosis and treatment of cancer.

The centre focuses on two key approaches to the treatment of patients with cancer:

  • Improving the diagnosis and management of breast and prostate cancers
  • Developing effective vaccines and immunotherapies that will significantly improve the survival rates and quality of life for cancer sufferers.

Visit the John van Geest Cancer Research Centre website to find out more about its work, or to make a donation towards its vital scientific research.

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms. Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and is in Phase 1/2 clinical trials. Preliminary evidence from Part 1 of the study showing that SCIB1 produced an immune response which might be associated with clinical benefit in patients with malignant melanoma was released in December 2012.

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity. The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.

The paper in the European Journal of Immunology can be accessed here.

Press enquiries please contact Dave Rogers, Senior Press Officer, on telephone +44 (0)115 848 8782 or via email, or Therese Easom, Press and Internal Communications Manager, on telephone +44 (0)115 848 8774 or via email.

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 7831 3113
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 7831 3113

DNA ImmunoBody® Patent Granted in Japan

Scancell Holdings Plc, (AIM:SCLP), the developer of novel immunotherapies for the treatment of cancer, is pleased to announce that a patent for its DNA ImmunoBody® technology has been granted in Japan.  This key patent follows approval in Australia earlier this year and adds to Scancell’s growing body of intellectual property for its ImmunoBody® platform.  Scancell’s protein ImmunoBody® patent has already been approved in the US, Europe, Japan and Australia.

Dr. Richard Goodfellow, Joint Chief Executive of Scancell, commented:

“This Japanese approval is an important addition as we continue to build a comprehensive IP portfolio for our ImmunoBody® platforms.  With the positive results from our SCIB1 study announced earlier this week and the progress we are making on our Moditope® programme, IP plays an increasingly important role in the value ascribed to Scancell’s technology.  We look forward to building on the momentum of Scancell’s progress in 2014.”

For Further Information:

Dr Richard Goodfellow, Joint CEO Scancell Holdings Plc + 44 (0) 20 7831 3113
Professor Lindy Durrant, Joint CEO Scancell Holdings Plc  
Camilla Hume/Stephen Keys Cenkos Securities plc + 44 (0) 20 7397 8900
Mo Noonan/Simon Conway FTI Consulting + 44 (0) 20 7831 3113

 

About Scancell

Scancell is developing novel immunotherapies for the treatment of cancer based on its ImmunoBody® and Moditope® technology platforms.  Scancell’s first ImmunoBody®, SCIB1 is being developed for the treatment of melanoma and has just completed Phase 1/2 clinical trials which demonstrated that SCIB1 produced a melanoma-specific immune response and promising survival trend.  A further higher dose study of SCIB1 will take place during 2014.

Scancell’s ImmunoBody® vaccines target dendritic cells and stimulate both parts of the cellular immune system; the helper cell system where inflammation is stimulated at the tumour site; and the cytotoxic T-lymphocyte or CTL response where immune system cells are primed to recognise and kill specific cells.

Scancell has also identified and patented a series of modified epitopes that stimulate the production of killer CD4 that destroy tumours without toxicity.  The Directors believe that the Moditope® platform could play a major role in the development of safe and effective cancer immunotherapies in the future.