SCIB1 combined with PD-1 blockade induced efficient therapy of poorly immunogenic tumors (2016)

SCIB1 combined with PD-1 blockade induced efficient therapy of poorly immunogenic tumors (2016)

Wei Xue, Victoria A. Brentville, Peter Symonds, Katherine W. Cook, Hideo Yagita, Rachael L. Metheringham and Lindy G. Durrant

ABSTRACT:

Purpose: We have previously shown that supraoptimal signaling of high avidity T cells leads to high expression of PD-1 and inhibition of proliferation. This study was designed to see if this effect could be mitigated by combining a vaccine that stimulates high avidity T cells with PD-1 blockade.

Experimental Design: We investigated the anti-tumor effect of a huIgG1 antibody DNA vaccine (SCIB1) and PD-1 blockade.

Results: Vaccination of HLA-DR4 transgenic mice with SCIB1 induced high frequency and avidity T cell responses that resulted in survival (40%) of mice with established B16F1-DR4 tumors. SCIB1 vaccination was associated with increased infiltration of CD4 and CD8 T cells within the tumor but was also associated with upregulation of PD-L1 within the tumor environment. PD-1 blockade also resulted in increased CD8 T cell infiltration and an anti-tumor response with 50% of mice showing long term survival.In line with our hypothesis that PD-1/PD-L1 signaling results in inhibition of proliferation of high avidity T cells at the tumor site, the combination of PD-1 blockade with vaccination, enhanced the number and proliferation of the CD8 tumor infiltrate. This resulted in a potent anti-tumor response with 80% survival of the mice.

Conclusions: There is a benefit in combining PD-1 blockade with vaccines that induce high avidity T cell responses and in particular with SCIB1.

Progress in Vaccination against Cancer 2016

PIVAC 2016 SCIB1 Clinical Trial Poster

L.G. Durrant, C. Ottensmeier, C. Mulatero, P. Lorigan, R. Plummer, R. Metheringham, V.Brentville, S. Adams, L. Machado, I. Daniels, D. Hannaman and P.M. Patel 

PIVAC 2016 Adjuvants for Moditope Poster

Katherine Cook, Peter Symonds, Victoria Brentville, Rachael Metheringham,  Wei Xue and Lindy Durrant

PIVAC 2016 Citrullinated Alpha Enolase Poster

K. Cook, I. Daniels, V. Brentville, R. Metheringham, W. Xue, P. Symonds, T. Pitt, M.Gijon and L. Durrant

PIVAC 2016 Protein Arginine Deiminase Enzymes Poster

R. Metheringham, M. Gijon, I. Daniels, K. Cook, P. Symonds, T. Pitt, W. Xue, V. Brentville and L. Durrant

SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes (2016)

SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes (2016)

Wei Xue, Rachael L. Metheringham, Victoria A. Brentville, Barbara Gunn, Peter Symonds, Hideo Yagita, Judith M.  Ramage and Lindy G. Durrant

ABSTRACT: Checkpoint blockade has demonstrated promising antitumor responses in approximately 10–40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NYESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

Autophagy, citrullination and cancer (2016)

Autophagy, citrullination and cancer (2016)

Lindy G. Durrant, Rachael L. Metheringham and Victoria A. Brentville

ABSTRACT: A cell needs to maintain a balance between biosynthesis and degradation of cellular components to maintain homeostasis. There are 2 pathways, the proteasome, which degrades short-lived proteins, and the autophagy/lysosomal pathway, which degrades long-lived proteins and organelles. Both of these pathways are also involved in antigen presentation or the effective delivery of peptides to MHC molecules for presentation to T cells. Autophagy (macroautophagy) is a key player in providing substantial sources of citrullinated peptides for loading onto MHC-II molecules to stimulate CD4+ T cell responses. Stressful conditions in the tumor microenvironment induce autophagy in cancer cells as a mechanism to promote their survival. We therefore investigated if citrullinated peptides could stimulate CD4+ T cell responses that would recognize these modifications produced during autophagy within tumor cells. Focusing on the intermediate filament protein VIM (vimentin), we generated citrullinated VIM peptides for immunization experiments in mice. Immunization with these peptides induced CD4+ T cells in response to autophagic tumor targets. Remarkably, a single immunization with modified peptide, up to 14 days after tumor implant, resulted in long-term survival in 60% to 90% of animals with no associated toxicity. These results show how CD4+ cells can mediate potent antitumor responses against modified self-epitopes presented on tumor cells, and they illustrate for the first time how the citrullinated peptides produced during autophagy may offer especially attractive vaccine targets for cancer therapy.

Citrullinated Vimentin presented on MHC-II in Tumor Cells is a target for CD4þ T-cell-mediated antitumor immunity (2016)

Citrullinated Vimentin presented on MHC-II in Tumor Cells is a target for CD4þ T-cell-mediated antitumor immunity (2016)

Victoria A. Brentville, Rachael L. Metheringham, Barbara Gunn, Peter Symonds, Ian Daniels, Mohamed Gijon, Katherine Cook, Wei Xue and Lindy G. Durrant 

ABSTRACT: Stressful conditions in the harsh tumor microenvironment induce autophagy in cancer cells as a mechanism to promote their survival.However, autophagy also causes post-translational modification of proteins that are recognized by the immune system. In particular, modified self-antigens can trigger CD4+ T-cell responses that might be exploited to boost antitumor immune defenses. In this study, we investigated the ability of CD4 cells to target tumor-specific self-antigens modified by citrullination, which converts arginine residues in proteins to citrulline. Focusing on the intermediate filament protein vimentin, which is frequently citrullinated in cells during epithelial-tomesenchymal transition of metastasizing epithelial tumors, we generated citrullinated vimentin peptides for immunization experiments in mice. Immunization with these peptides induced IFNγ- and granzyme B-secreting CD4 T cells in response to autophagic tumor targets. Remarkably, a single immunization with modified peptide, up to 14 days after tumor implant, resulted in long-term survival in 60% to 90% of animals with no associated toxicity. This antitumor response was dependent on CD4 cells and not CD8+ T cells. These results show how CD4 cells can mediate potent antitumor responses against modified self-epitopes presented on tumor cells, and they illustrate fort he first time how the citrullinated peptides may offer especially attractive vaccine targets for cancer therapy. Cancer Res; 76(3); 548–60. 2015 AACR.

Progress in Vaccination against Cancer 2015

PIVAC 2015 SCIB2 Poster

Wei Xue, Rachael Metheringham, Victoria Brentville, Katherine Cook, Peter Symonds, Ian Daniel and Lindy Durrant

PIVAC 2015 Moditope poster 2

V. Brentville, W. Xue, P. Symonds, K. Cook, B. Gunn, R. Metheringham and L.G. Durrant

PIVAC 2015 SCIB1 resected disease

L.G. Durrant, C. Ottensmeier, C. Mulatero, P. Lorigan, R. Plummer, R. Metheringham, V. Brentville, L. Machado, I. Daniels, D. Hannaman and P.M. Patel

PIVAC 2015 SCIB1 plus checkpoint inhibition

Wei Xue, Victoria Brentville, Rachael Metheringham, Katherine Cook, Peter, Symonds, Ian Daniels and Lindy Durrant